Identification of the Valence and Coordination Environment of the Particulate Methane Monooxygenase Copper Centers by Advanced EPR Characterization

نویسندگان

  • Megen A. Culpepper
  • George E. Cutsail III
  • William A. Gunderson
  • Brian M. Hoffman
  • Amy C. Rosenzweig
چکیده

Particulate methane monooxygenase (pMMO) catalyzes the oxidation of methane to methanol in methanotrophic bacteria. As a copper-containing enzyme, pMMO has been investigated extensively by electron paramagnetic resonance (EPR) spectroscopy, but the presence of multiple copper centers has precluded correlation of EPR signals with the crystallographically identified monocopper and dicopper centers. A soluble recombinant fragment of the pmoB subunit of pMMO, spmoB, like pMMO itself, contains two distinct copper centers and exhibits methane oxidation activity. The spmoB protein, spmoB variants designed to disrupt one or the other or both copper centers, as well as native pMMO have been investigated by EPR, ENDOR, and ESEEM spectroscopies in combination with metal content analysis. The data are remarkably similar for spmoB and pMMO, validating the use of spmoB as a model system. The results indicate that one EPR-active Cu(II) ion is present per pMMO and that it is associated with the active-site dicopper center in the form of a valence localized Cu(I)Cu(II) pair; the Cu(II), however, is scrambled between the two locations within the dicopper site. The monocopper site observed in the crystal structures of pMMO can be assigned as Cu(I). (14)N ENDOR and ESEEM data are most consistent with one of these dicopper-site signals involving coordination of the Cu(II) ion by residues His137 and His139, the other with Cu(II) coordinated by His33 and the N-terminal amino group. (1)H ENDOR measurements indicate there is no aqua (HxO) ligand bound to the Cu(II), either terminally or as a bridge to Cu(I).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Copper methanobactin: a molecule whose time has come.

Copper plays a key role in the physiology of methanotrophs. One way that these bacteria meet their high copper requirement is by the biosynthesis and release of high affinity copper binding compounds called methanobactins. Recent advances in methanobactin characterization include the first crystal structure, detailed spectroscopic analyses, and studies of metal ion specificity. Methanobactin ma...

متن کامل

Direct injection of methane in advanced propulsion systems: effects of thermodynamic conditions

The direct injection of gaseous fuels involves the presence of under-expanded jets due to the high pressure-ratios and the strong gas compressibility. Understanding the physical development of such processes is essential for developing Direct Injection (DI) devices suitable for application in internal combustion engines fueled by methane or hydrogen. In this work a coupled experimental-numerica...

متن کامل

Expression of individual copies of Methylococcus capsulatus bath particulate methane monooxygenase genes.

The expression of the two gene clusters encoding the particulate methane monooxygenase (pMMO) in Methylococcus capsulatus Bath was assessed by analysis of transcripts and by use of chromosomal gene fusions. The results suggest that the two clusters are functionally redundant but that relative expression alters depending on the copper levels available for growth.

متن کامل

The Effect of Polyvinylpyrrolidone on the Formation of Copper Nanoplates in Wet-Chemical Reduction Method

In this work, we report synthesis and characterization of copper nanoparticles in polymer matrix by wet-chemical reduction method using ascorbic acid as reducing agent, copper (II) sulfate as metal precursor and polyvinylpyrrolidone k-30 (PVP K-30) as surfactant agent. The reaction was carried out in a high-speed stirring mixture at room temperature under nitrogen atmosphere. Characterization o...

متن کامل

The Effect of Polyvinylpyrrolidone on the Formation of Copper Nanoplates in Wet-Chemical Reduction Method

In this work, we report synthesis and characterization of copper nanoparticles in polymer matrix by wet-chemical reduction method using ascorbic acid as reducing agent, copper (II) sulfate as metal precursor and polyvinylpyrrolidone k-30 (PVP K-30) as surfactant agent. The reaction was carried out in a high-speed stirring mixture at room temperature under nitrogen atmosphere. Characterization o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 136  شماره 

صفحات  -

تاریخ انتشار 2014